The Cluster Basis of Z[x1,1,...,x3,3]

نویسنده

  • Mark Skandera
چکیده

We show that the set of cluster monomials for the cluster algebra of type D4 contains a basis of the Z-module Z[x1,1, . . . , x3,3]. We also show that the transition matrices relating this cluster basis to the natural and the dual canonical bases are unitriangular and nonnegative. These results support a conjecture of Fomin and Zelevinsky on the equality of the cluster and dual canonical bases. In the event that this conjectured equality is true, our results also imply an explicit factorization of each dual canonical basis element as a product of cluster variables.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A preorder-free construction of the Kazhdan-Lusztig representations of Hecke algebras Hn(q) of symmetric groups

We use a quantum analog of the polynomial ringZ[x1,1, . . . , xn,n] to modify the Kazhdan-Lusztig construction of irreducible Hn(q)-modules. This modified construction produces exactly the same matrices as the original construction in [Invent. Math. 53 (1979)], but does not employ the Kazhdan-Lusztig preorders. Our main result is dependent on new vanishing results for immanants in the quantum p...

متن کامل

RELATIONS BETWEEN THE CLAUSEN AND KAZHDAN-LUSZTIG REPRESENTATIONS OF Sn

We use Kazhdan-Lusztig polynomials and subspaces of the polynomial ring C[x1,1, . . . , xn,n] to construct irreducible Sn-modules. This construction produces exactly the same matrices as the Kazhdan-Lusztig construction [Invent.Math 53 (1979)], but does not employ the Kazhdan-Lusztig preorders. It also produces exactly the same modules as those which Clausen constructed using a different basis ...

متن کامل

Bitableaux and Zero Sets of Dual Canonical Basis Elements

We state new results concerning the zero sets of polynomials belonging to the dual canonical basis of C[x1,1, . . . , xn,n]. As an application, we show that this basis is related by a unitriangular transition matrix to the simpler bitableau basis popularized by Désarménien-Kung-Rota. It follows that spaces spanned by certain subsets of the dual canonical basis can be characterized in terms of p...

متن کامل

Kazhdan-Lusztig immanants III: Transition matrices between canonical bases of immanants

We study two bases of the vector space of immanants of C[x1,1, . . . , xn,n]: the bitableaux basis of Désarménien-Kung-Rota, and a subset of the dual canonical basis called the basis of Kazhdan-Lusztig immanants. We show that the transition matrix between these bases is unitriangular, describe new vanishing results for the Kazhdan-Lusztig immanants, and relate both bases to other immanants defi...

متن کامل

A preorder-free construction of the Kazhdan-Lusztig representations of Sn, with connections to the Clausen representations

We use the polynomial ring C[x1,1, . . . , xn,n] to modify the Kazhdan-Lusztig construction of irreducible Snmodules. This modified construction produces exactly the same matrices as the original construction in [Invent. Math 53 (1979)], but does not employ the Kazhdan-Lusztig preorders. We also show that our modules are related by unitriangular transition matrices to those constructed by Claus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2007